笔趣阁书吧

第17章 (第2/2页)

天才一秒记住【笔趣阁书吧】地址:www.ample-sg.com

于在正常情况下实粒子总是具有正能量,所以具有负能量的那一个粒子注定是短命的虚粒子。它必须找到它的伴侣并与之相湮灭。然而,一颗接近大质量物体的实粒子比它远离此物体时能量更小,因为要花费能量抵抗物体的引力吸引才能将其推到远处。正常情况下,这粒子的能量仍然是正的。但是黑洞里的引力是如此之强,甚至在那儿一个实粒子的能量都会是负的。所以,如果存在黑洞,带有负能量的虚粒子落到黑洞里变成实粒子或实反粒子是可能的。这种情形下,它不再需要和它的伴侣相湮灭了,它被抛弃的伴侣也可以落到黑洞中去。啊,具有正能量的它也可以作为实粒子或实反粒子从黑洞的邻近逃走(图)。对于一个远处的观察者而言,这看起来就像粒子是从黑洞发射出来一样。黑洞越小,负能粒子在变成实粒子之前必须走的距离越短,这样黑洞发射率和表观温度也就越大。

辐射出去的正能量会被落入黑洞的负能粒子流所平衡。按照爱因斯坦方程e=mc2(e是能量,m是质量,c为光速),能量和质量成正比。所以往黑洞去的负能量流减少它的质量。当黑洞损失质量时,它的事件视界面积变小,但是它发射出的辐射的熵过量地补偿了黑洞的熵的减少,所以第二定律从未被违反过。

还有,黑洞的质量越小,则其温度越高。这样当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。人们并不很清楚,当黑洞的质量最后变得极小时会发生什么。但最合理的猜想是,它最终将会在一个巨大的、相当于几百万颗氢弹爆炸的发射爆中消失殆尽。

一个具有几倍太阳质量的黑洞只具有1000万分之一度的绝对温度。这比充满宇宙的微波辐射的温度(大约)要低得多,所以这种黑洞的辐射比它吸收的还要少。如果宇宙注定继续永远膨胀下去,微波辐射的温度就会最终减小到比这黑洞的温度还低,它就开始损失质量。但是即使那时候,它的温度是如此之低,以至于要用100亿亿亿亿亿亿亿亿年(1后面跟66个0)才全部蒸发完。这比宇宙的年龄长得多了,宇宙的年龄大约只有100到200亿年(1或2后面跟10个0)。另一方面,正如第六章提及的,在宇宙的极早期阶段存在由于无规性引起的坍缩而形成的质量极小的太初黑洞。这样的小黑洞会有高得多的温度,并以大得多的速率发生辐射。具有10亿吨初始质量的太初黑洞的寿命大体和宇宙的年龄相同。初始质量比这小的太初黑洞应该已蒸发完毕,但那些比这稍大的黑洞仍在辐射出x射线以及伽玛射线。这些x射线和伽玛射线像是光波,只是波长短得多。这样的黑洞几乎不配这黑的绰号:它们实际上是白热的,正以大约1万兆瓦的功率发射能量。

只要我们能够驾驭黑洞的功率,一个这样的黑洞可以开动10个大型的发电站。然而,这是非常困难的:这黑洞的质量和一座山差不多,却被压缩成万亿之一英寸亦即比一个原子核的尺度还小!如果在地球表面上你有这样的一个黑洞,就无法阻止它透过地面落到地球的中心。它会穿过地球而来回振动,直到最后停在地球的中心。所以仅有的放置黑洞并利用之发出能量的地方是绕着地球转动的轨道,而仅有的将其放到这轨道上的办法是,用在它之前的一个大质量的吸引力去拖它,这和在驴子前面放一根胡罗卜相当像。至少在最近的将来,这个设想并不现实。

但是,即使我们不能驾驭这些太初黑洞的辐射,我们观测到它们的机遇又如何呢?我们可以去寻找在太初黑洞寿命的大部分时间里发出的伽玛射线辐射。虽然它们在很远以外的地方,从大部分黑洞来的辐射非常弱,但是从所有它们来的总的辐射是可以检测得到的。我们确实观察到了这样的一个伽玛射线背景:图表示观察到的强度随频率的变化。然而,这个背景可以是也可能是除了太初黑洞之外的过程产生的。图中点线指出,如果在每立方光年平均有300个太初黑洞,它们所发射的伽玛射线的强度应如何地随频率而变化。

www.。m.

如遇章节错误,请点击报错(无需登陆)

新书推荐

兵者在前 吞噬星空之太上问道 天眼 暗河长明 女娲成长日记 洪荒:我祖龙,开局选择龙族退隐! 藏渊沉凰